###
Light: Reflection and Refraction

This is a tier I instructional resource to provide a scaffolded learning experience for TEKS (5)(6)(C).

###
Newton's Law of Inertia

This resource provides instructional resources for Newton's First Law, the law of inertia.

###
Newton's Law of Action-Reaction

This resource is to support TEKS (8)(6)(C), specifically the Newton's third law or the law of action-reaction.

###
Approximating the Value of Irrational Numbers

Given problem situations that include pictorial representations of irrational numbers, the student will find the approximate value of the irrational numbers.

###
Expressing Numbers in Scientific Notation

Given problem situations, the student will express numbers in scientific notation.

###
Determining if a Relationship is a Functional Relationship

The student is expected to gather and record data & use data sets to determine functional relationships between quantities.

###
Graphing Dilations, Reflections, and Translations

Given a coordinate plane, the student will graph dilations, reflections, and translations, and use those graphs to solve problems.

###
Graphing and Applying Coordinate Dilations

Given a coordinate plane or coordinate representations of a dilation, the student will graph dilations and use those graphs to solve problems.

###
Developing the Concept of Slope

Given multiple representations of linear functions, the student will develop the concept of slope as a rate of change.

###
Generating Different Representations of Relationships

Given problems that include data, the student will generate different representations, such as a table, graph, equation, or verbal description.

###
Predicting, Finding, and Justifying Data from a Graph

Given data in the form of a graph, the student will use the graph to interpret solutions to problems.

###
Kinetic and Potential Energy

Given diagrams, illustrations or relevant data, students will identify examples of kinetic and potential energy and their transformations.

###
Work-Energy Theorem

Using diagrams, illustrations, and relevant data, students will calculate the net work done on an object, the change in an object's velocity, and the change in an object's kinetic energy.

###
Graphing Proportional Relationships

Given a proportional relationship, students will be able to graph a set of data from the relationship and interpret the unit rate as the slope of the line.

###
Mean Absolute Deviation

Given a set of data with no more than 10 data points, students will be able to determine and use the mean absolute deviation to describe the spread of the data.

###
Generalizing about Populations from Random Samples

Given a population with known characteristics, students will be able to use a variety of methods to generate random samples of the same size in order to understand how a random sample is representative of a population.

###
Evaluating Solutions for Reasonableness

Given problem situations, the student will determine if the solutions are reasonable.

###
Predicting, Finding, and Justifying Solutions to Problems

Given application problems, the student will use appropriate tables, graphs, and algebraic equations to find and justify solutions to problems.

###
Can We Get There?

Students will calculate the rate of change and *y*-intercept from a real-world problem represented in a graph, a table, and/or an equation. They will then display and present their findings to the class.

###
19 OnTRACK Grade 7 Math: Proportionality

Students will learn to use proportional relationships to describe dilations; to explain proportional and non-proportional relationships involving slope; and to use proportional and non-proportional relationships to develop foundational concepts of functions.